Chaos in disordered nonlinear lattices

Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Work in collaboration with Sergej Flach, Joshua Bodyfelt, Ioannis Gkolias, Dima Krimer, Stavros Komineas, Tanya Laptyeva

Outline

- Disordered lattices:
 - **✓** The quartic Klein-Gordon (KG) model
 - ✓ The disordered nonlinear Schrödinger equation (DNLS)
 - **✓ Different dynamical behaviors**
- Chaotic behavior of the KG model
 - **✓ Lyapunov exponents**
 - **✓ Deviation Vector Distributions**
- Numerical Integration methods
- Summary

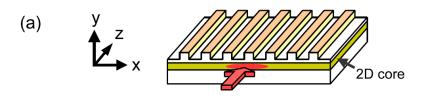
Interplay of disorder and nonlinearity

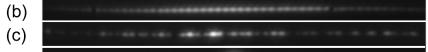
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

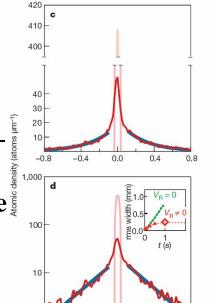
Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)]

Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]







The Klein – Gordon (KG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem:

$$\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$$
 with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

The discrete nonlinear Schrödinger (DNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \boldsymbol{\varepsilon}_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left[-\frac{W}{2},\frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with $E_v = \frac{1}{2} \left(\dot{A}_v^2 + \omega_v^2 A_v^2 \right)$, where A_v is the amplitude

of the vth NM (KG) or norm distributions (DNLS).

Second moment:
$$m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$$
 with $\overline{v} = \sum_{v=1}^{N} v z_v$

Participation number:
$$P = \frac{1}{\sum_{v=1}^{N} z_v^2}$$

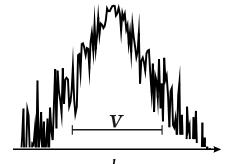
measures the number of stronger excited modes in z_v . Single mode P=1. Equipartition of energy P=N.

Scales
Linear case: $\omega_v^2 \in \left[\frac{1}{2}, \frac{3}{2} + \frac{4}{W}\right]$, width of the squared frequency spectrum:

$$\Delta_K = 1 + \frac{4}{W}$$

$$(\Delta_D = W + 4)$$

$$\Delta_{K} = 1 + \frac{4}{W}$$
Localization volume of an eigenstate:
$$V \sim \frac{1}{\sum_{l=1}^{N} A_{v,l}^{4}}$$



Average spacing of squared eigenfrequencies of NMs within the range of a

localization volume:
$$d_K \approx \frac{\Delta_K}{V}$$

Nonlinearity induced squared frequency shift of a single site oscillator

$$\delta_{l} = \frac{3E_{l}}{2\tilde{\varepsilon}_{l}} \propto E \qquad (\delta_{l} = \beta |\psi_{l}|^{2})$$

The relation of the two scales $d_K \leq \Delta_K$ with the nonlinear frequency shift δ_l determines the packet evolution.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: $d<\delta<\Delta$, $m_2\sim t^{1/2} \longrightarrow m_2\sim t^{1/3}$

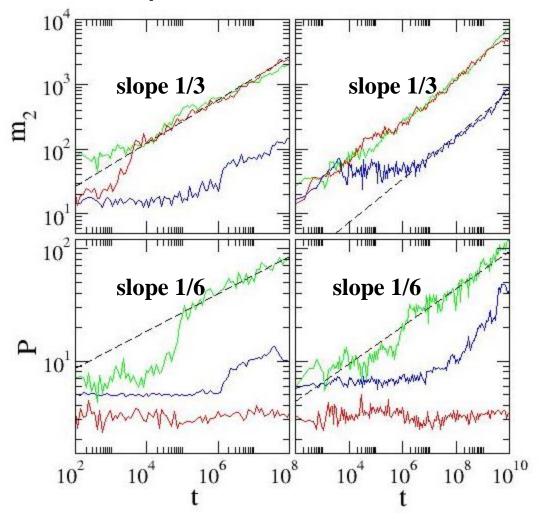
Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: $\delta > \Delta$

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations

DNLS W=4, β = 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5



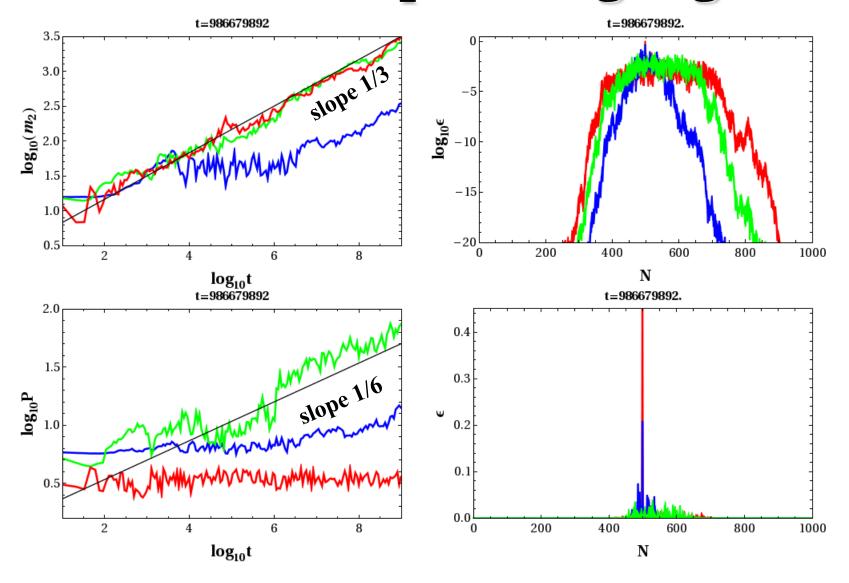
No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t $^{\alpha}$) over 20 realizations:

 α =0.33±0.05 (KG) α =0.33±0.02 (DLNS)

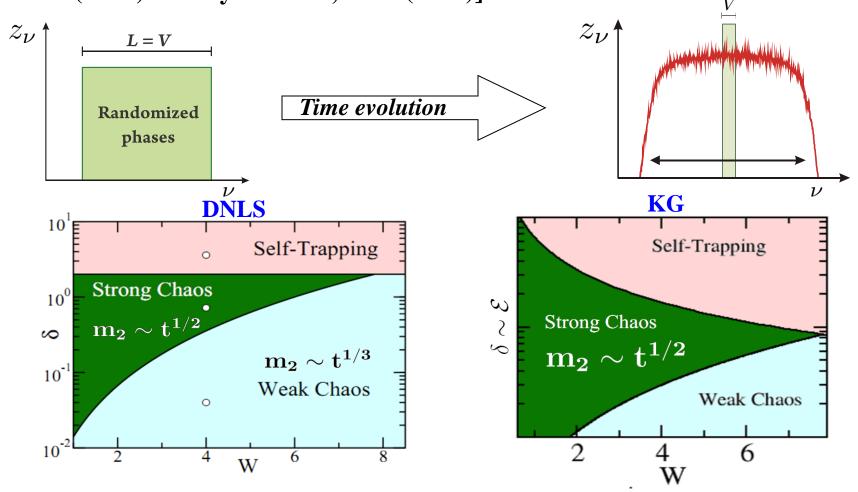
Flach et al., PRL (2009) S. et al., PRE (2009)

KG: Different spreading regimes

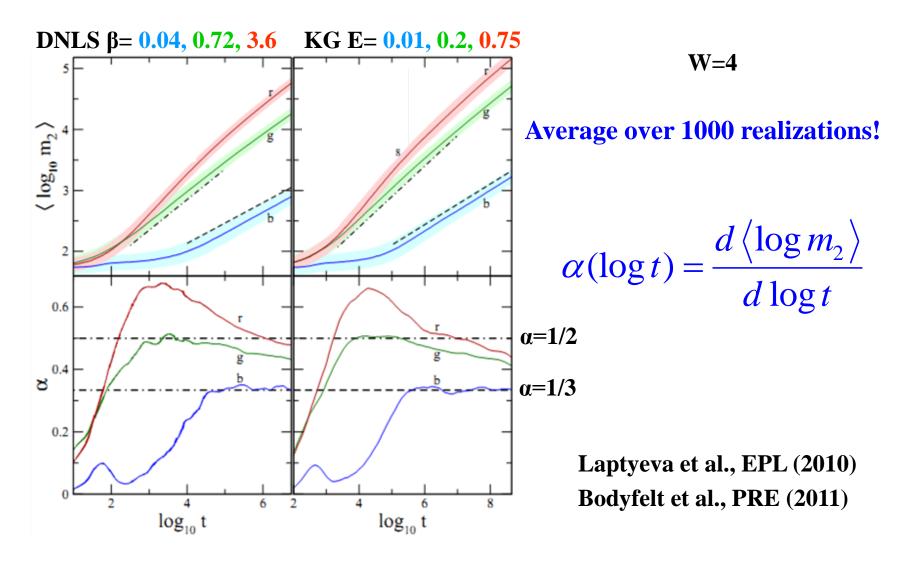


Crossover from strong to weak chaos

We consider compact initial wave packets of width L=V [Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)].



Crossover from strong to weak chaos (block excitations)



Lyapunov Exponents (LEs)

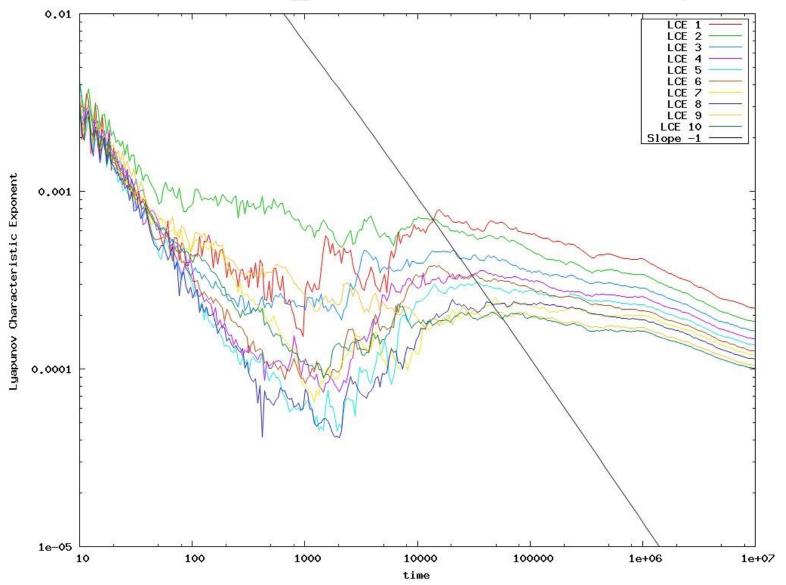
Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition $\mathbf{x}(0)$ and an initial deviation vector from it $\mathbf{v}(0)$. Then the mean exponential rate of divergence is:

$$\mathbf{mLCE} = \lambda_1 = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|\vec{\mathbf{v}}(t)\|}{\|\vec{\mathbf{v}}(0)\|}$$

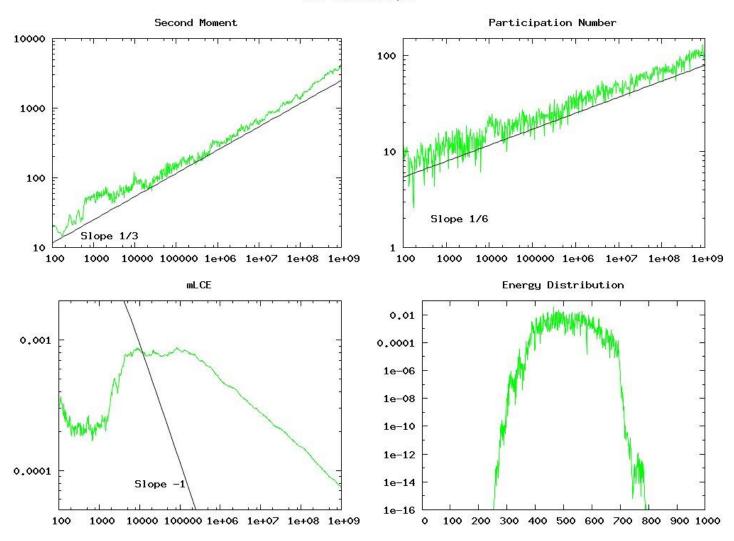
 λ_1 =0 → Regular motion ∞ (t⁻¹) λ_1 ≠0 → Chaotic motion

KG: LEs for single site excitations (E=0.4)



KG: Weak Chaos (E=0.4)

t = 1000000000.00

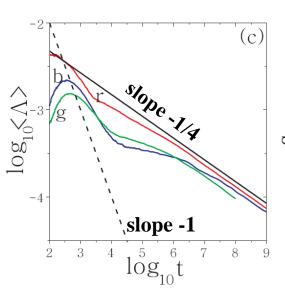


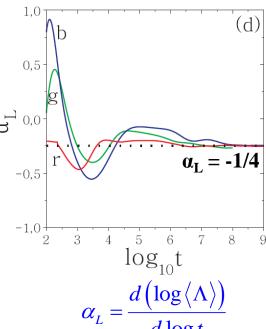
KG: Weak Chaos

Individual runs

Linear case E=0.4, W=4







Average over 50 realizations

Single site excitation E=0.4, W=4

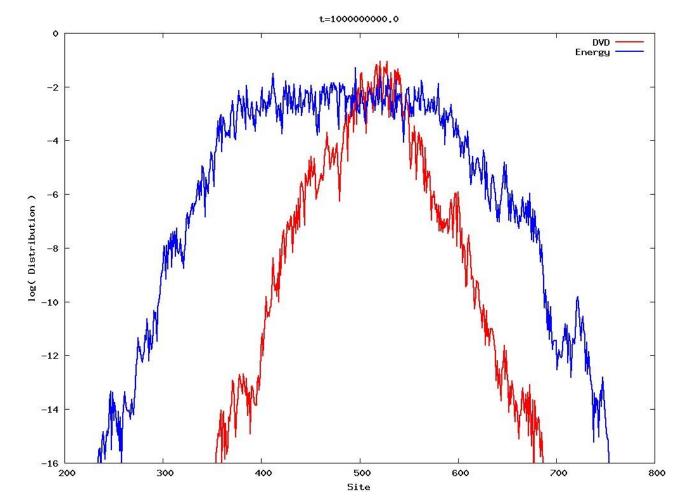
Block excitation (21 sites) E=0.21, W=4

Block excitation (37 sites)

E=0.37, W=3

S. et al. PRL (2013)

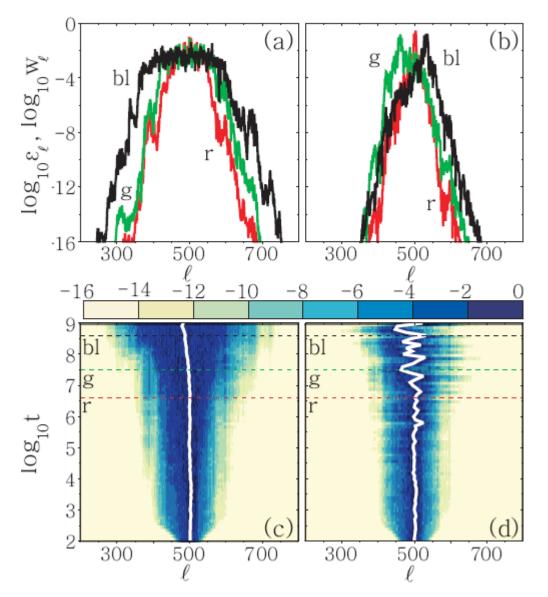
Deviation Vector Distributions (DVDs)



Deviation vector: $v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$

DVD:
$$w_l = \frac{\delta u_l^2 + \delta p_l^2}{\sum_l \left(\delta u_l^2 + \delta p_l^2\right)}$$

Deviation Vector Distributions (DVDs)



Individual run E=0.4, W=4

Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

Numerical Integration methods

We use Symplecic Integrators for solving numerically

- the equations of motion, and
- the variational equations (Tangent Map method)

For more information attend the presentation:

'Efficient integration techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation'

on Monday 31 October at

'MS7. Dynamics of nonlinear lattices and graphs'

Summary

- We presented three different dynamical behaviors for wave packet spreading in 1d nonlinear disordered lattices:
 - ✓ Weak Chaos Regime: $\delta < d$, $m_2 \sim t^{1/3}$
 - ✓ Intermediate Strong Chaos Regime: $d<\delta<\Delta$, $m_2\sim t^{1/2}$ \longrightarrow $m_2\sim t^{1/3}$
 - ✓ Selftrapping Regime: $\delta > \Delta$
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.
- Our results suggest that Anderson localization is eventually destroyed by nonlinearity, since spreading does not show any sign of slowing down.
- We emphasize the use of symplectic integartion schemes for such models (talk on Monday 31 October at 'MS7. Dynamics of nonlinear lattices and graphs').

References

- Flach, Krimer, S. (2009) PRL, 102, 024101
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211
- S., Flach (2010) PRE, 82, 016208
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205
- Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) Int. J. Bifurc. Chaos, 21, 2107
- S., Gkolias, Flach (2013) PRL, 111, 064101
- Tieleman, S., Lazarides (2014) EPL, 105, 20001
- S., Gerlach (2010) PRE, 82, 036704
- Gerlach, S. (2011) Discr.Cont. Dyn. Sys.-Supp. 2011, 475
- Gerlach, Eggl, S. (2012) Int. J. Bifurc. Chaos, 22, 1250216
- Gerlach, Eggl, S., Bodyfelt, Papamikos (2013) nlin.CD/1306.0627
- S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103

A ...shameless promotion

Lecture Notes in Physics 915

Charalampos (Haris) Skokos Georg A. Gottwald Jacques Laskar *Editors*

Chaos Detection and Predictability

Contents

- 1. Parlitz: Estimating Lyapunov Exponents from Time Series
- 2. Lega, Guzzo, Froeschlé: Theory and Applications of the Fast Lyapunov Indicator (FLI) Method
- 3. Barrio: Theory and Applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) Methods
- 4. Cincotta, Giordano: Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
- 5. Ch.S., Manos: The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection
- **6. Sándor, Maffione:** The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy
- 7. Gottwald, Melbourne: The 0-1 Test for Chaos: A Review
- 8. Siegert, Kantz: Prediction of Complex Dynamics: Who Cares About Chaos?

2016, Lect. Notes Phys., 915, Springer